Hitoshi Murata • Katsuhiko Babasaki

Intra- and inter-specific variations in the copy number of two types of retrotransposons from the ectomycorrhizal basidiomycete Tricholoma matsutake

Received: 25 May 2004 / Accepted: 1 April 2005 / Published online: 7 June 2005

(C) Springer-Verlag 2005

Abstract

To explore intra- and inter-specific variations of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces the fruit body "matsutake", we carried out real-time PCR analysis based on two types of retrotransposons, one designated marYl, which resembles a retrovirus carrying the long terminal repeat (LTR) and the other $\operatorname{mar} Y 2 N$, which resembles mRNA carrying the polyadenylated tail. Calculation based on the average genome size of homobasidiomycetes (34 Mbp) shows that ca. 5.5% of the total genome of T. matsutake isolated from Asia is made up of these retrotransposons, whereas they occupy ca. 1.4\% in the isolates from Morocco, ca. 0.8% in isolates from Mexico, and ca. 0.5% in Tricholoma magnivelare, the species which produces "American matsutake". Other Tricholoma spp. that produce fruit bodies similar to those of T. matsutake, such as T. bakamatsutake, T. fulvocastaneum, and T. robustum, carry them in the region less than 0.05% of their total genome. Copy number of LTR of marYl is consistently and markedly higher than that of the coding regions of marY1 and marY2N. Data suggest that retrotransposons are deeply involved in evolution of the ectomycorrhizal symbiont.

Keywords Basidiomycetes • Ectomycorrhizas • Genome evolution • Retrotransposons • Tricholoma matsutake

Introduction

Tricholoma matsutake is an ectomycorrhizal basidiomycete that produces the economically important edible mushrooms "matsutake" in association with Pinus sp. in the northern hemisphere (Hosford et al. 1997). Recently, mat-

[^0]sutake was also recognized in Quercus sp. forests in the Yunnan province of China (Nakayama and Nakanishi 2004). Some other Tricholoma spp. produce fruit bodies similar to those of T. matsutake during ectomycorrhizal symbiosis (Hosford et al. 1997). For example, Tricholoma magnivelare produces large white fruit bodies known as American matsutake in association with a wide variety of conifers exclusively in the Pacific northwest region of America. Tricholoma bakamatsutake and Tricholoma fulvocastaneum produce rather yellowish fruit bodies known as baka (foolish)-matsutake and nise (false)-matsutake, respectively, during symbiosis with broad-leaved trees. Tricholoma robustum, a symbiont of conifers, is also a member of these fungi, producing matsutake-like mushrooms. Thus far, little information is available regarding intra- and inter-specific variations of T. matsutake and related fungi at the level of molecular genetics and genomics.

Retrotransposons are retrovirus-like DNA parasites associated with eukaryotic genomes. In response to environmental stresses, retrotransposons may replicate through an RNA-intermediate and allow their copies to integrate into other genomic loci with activities of reverse transcriptase, RNase H, and integrase, enzymes encoded in the polyprotein (pol) gene (Bushman 2002). Such an incidence confers the occurrence of complexity of eukaryotic genomes and influences intra- and inter-specific diversification of organisms (Bushman 2002). We previously reported for the first time in basidiomycetes two types of retrotransposons designated marYl and marY2N (Murata and Yamada 2000; Murata et al. 2001b). marYl is a $6.0-\mathrm{kb}$ gypsy-type retrotransposon carrying a 426-bp long terminal repeat (LTR) designated $\sigma_{m a r Y l}$, which is closely related to mammalian retroviruses (Murata and Yamada 2000). $\operatorname{mar} Y 2 N$ is a member of long intersperse nuclear elements (LINEs), with the size variable among copies depending mostly upon the length of 5^{\prime} - and 3^{\prime}-terminal regions; its structure resembles mRNA in that it carries the polyadenylation signal and the polyadenylated tail at 3^{\prime} end (Murata et al. 2001b).

In the present study, we investigated the copy number of marY1 and marY2N in the genome of T. matsutake and
closely related fungi by a real-time PCR system. Such a system should allow PCR products to be quantified during the exponential multiplication phase of the reaction through the measurement of fluorescent light emitted by SYBR Green dye incorporated into double-stranded DNA (Higuchi et al. 1992). Thus, real-time PCR provides us with information on the number of specific genes and expressed genes, as well as on the size of the population of microbial cells in nature (Gibson et al. 1996; Heid et al. 1996). Through this novel approach, we were able to promote our understanding of the biology and, potentially, the ecology of commercially important ectomycorrhizal resources.

Materials and methods

Fungal strains and culture condition
Fungal strains used in this study are shown in Table 1. Fungal mycelia were cultured in a modified Melin-Norkrans liquid medium containing V8 juice (Campbell Soup Co., Camden, NJ, USA) instead of NaCl at the final conc. of 1.5%.

Plasmids for calibration of real-time PCR

The plasmid pHHM 147 is the vector $\mathrm{pSK}+$ carrying the $5.5-\mathrm{kb}$ KpnI-BgIII genomic DNA of T. matsutake Y 1 that is predicted to encode part of the polyprotein designated pol $l_{\text {marYI }}$ (Murata and Yamada 2000; see also Fig. 1 for the structure of mar Y 1). The plasmid pHHM 149 is the vector pCR2.1 carrying the $0.65-\mathrm{kb} 5^{\prime}-\sigma_{\operatorname{marYI}}$ region, i.e., the LTR
of marYl (Murata and Miyazaki 2001). The plasmid pHHM166 is pSK+ carrying the $4.9-\mathrm{kb}$ EcoRI genomic DNA of T. matsutake Y1, on which the polyprotein gene designated pol-1 $1_{\text {mar } Y 2 N}$ resides (Murata et al. 2001b; see also Fig. 1 for the structure of marY2N).

Primers used for real-time PCR

Primers used in real-time PCR analysis are depicted in Fig. 1. The primers 5 B and 3 L were designed based on the sequence located onward at bp 309 and the complementary sequence backward at bp 426 of mar $Y 1$, respectively (Fig. 1). These primers allowed the amplification of a 118-bp $\sigma_{\text {marYl }}$ DNA segment in a variety of higher fungi (Fig. 1; Murata et al. 2001a). For the analysis of a coding region of marY1, the primers Y1-p and Y1-r were designed based on the sequence at bp 3,121 and the complementary one at bp 3,234 of marY1, respectively, which allowed the amplification of a 113-bp pol $l_{\text {marYl }}$ DNA segment (Fig. 1). We previously noted in marY2N two ORFencoding polyproteins (pol), one apparently encoding a protein not holding any catalytic domains (pol-1 $1_{\text {marY2N }}$) and the other encoding reverse transcriptase and RNase H (pol-2 mar $_{\text {Y2N }}$) (Fig. 1; Murata et al. 2001b). Of these two pol genes, pol-1 $1_{\text {mar Y2N }}$, located between gag and pol- $2_{\text {marY2N }}$, was consistently noted in cloned copies of marY2N, a situation different from pol-2 $2_{\text {mar } Y 2 N}$, which is not always associated depending upon copies (Fig. 1; Murata et al. 2001b). Therefore, the primers Y2N-p and Y2N-r for assaying a coding region of mar Y 2 N were designed based on the sequence at bp 217 and the complementary one at bp 321 of pol-1 $1_{\text {mar Y2N }}$ (Fig. 1).

Table 1 Fungal strains used in this study

Species	Strains	Sampling site	Year
Tricholoma matsutake	Y1	Pinus densiflora forest, Ibaraki Prefecture, Japan	1993
	Y4	P. densiflora forest, Ibaraki Prefecture, Japan	1996
	K1	Republic of Korea ${ }^{\text {a }}$	1997
	K3	Republic of Korea ${ }^{\text {a }}$	2003
	K4	Republic of Korea ${ }^{\text {a }}$	2003
	Tm-9	People's Republic ${ }^{\text {a }}$	1992
	CHI1	People's Republic of China ${ }^{\text {a }}$	1998
	MC1	Kingdom of Morocco ${ }^{\text {a }}$	1998
	TM-5	Kingdom of Morocco ${ }^{\text {a }}$	1992
	MX1	Mexico ${ }^{\text {a }}$	1998
	TM-4	Mexico ${ }^{\text {a }}$	1992
Tricholoma magnivelare Tricholoma bakamatsutake	Tp-C3	Canada ${ }^{\text {a }}$	1994
	TM-10	Canada ${ }^{\text {a }}$	1992
	CB-Tb1	Pasania edulis/Castanopsis cuspidata var. Sieboldii forest, Chiba Prefecture, Japan	1989
	CB-Tb2	P. edulis/C. cuspidata var. Sieboldii forest, Chiba Prefecture, Japan	1990
Tricholoma fulvocastaneum Tricholoma robustum	WK-N1	Quercus phillyraeoides forest, Wakayama Prefecture, Japan	1988
	KB1	P. densiflora forest, Nagano Prefecture, Japan	2000

Fig. 1 Primer design to determine copy number of the retrotransposons marY1 and marY2N in the genome of Tricholoma by the real-time PCR analysis. A Schematic representation of marYl and description of primers 5B, 3L, Y1-p, and Y1-r. Long terminal repeat designated $\sigma_{\text {marYl }}$ and the pol $l_{\text {marYl }}$ coding region analyzed in this study are shown by the hatched bar and the open bar, respectively. Likewise, other coding regions, such as $\operatorname{gag}_{\text {marYI }}$ and prt marY1, are given by the solid bar and the shaded bar, respectively. Locations of primers are indicated by the arrows. B Schematic representation of
$\operatorname{marY} 2 N$ and description of primers Y2N-p and Y2N-r. $\operatorname{gag}_{\operatorname{marY2N}}$ and two pol coding regions, i.e., pol-1 marY2N and pol-2 marY2N, are given by the solid bar and the open bar, respectively. Locations of primers are indicated by the arrows. C, D and E Profiles of fragments amplified by real-time PCR with the primer set $5 \mathrm{~B} / 3 \mathrm{~L}, \mathrm{Y} 1-\mathrm{p} /$ Y1-r, and Y2N-p/Y2N-r, respectively. 1, T. matsutake Y1; 2, T. matsutake K1; 3, T. matsutake TM-9; 4, T. matsutake TM-5; 5, T. matsutake TM-4; 6, T. magnivelare TM-10; 7, T. bakamatsutake CbTb2; 8, T. fulvocastaneum WK-N1; and 9, T. robustum KB

Real-time PCR analysis

Genomic DNA to be used as a template was isolated from frozen mycelia of fungal strains using a lysis buffer containing hexadecyltrimethylammonium bromide (Murata and Yamada 2000). Real-time PCR was carried out using primers described above in the LightCycler system (Roche Diagnostics Japan, Tokyo). The enzymatic reaction was conducted in 10μ l of a standard reaction mixture containing SYBR Green with 1.0 ng of an appropriate template DNA and 300 nM primers. Cycle reactions were performed in the sequence of $1 \times\left[95^{\circ} \mathrm{C} / 10 \mathrm{~min}\right]$, followed by $40 \times$ $\left[95^{\circ} \mathrm{C} / 10 \mathrm{sec}, 61^{\circ} \mathrm{C} / 5 \mathrm{sec}\right.$, and $\left.72^{\circ} \mathrm{C} / 3 \mathrm{sec}\right]$. Each set of PCR runs, which was carried out in duplicate, was calibrated with reference to a standard curve and a water control. The standard curve was constructed by real-time PCR with a plasmid containing a target DNA, in which a $1.0-\mathrm{ng} / \mu \mathrm{l}$ plasmid sample was serially diluted up to 10^{-9}, and $1 \mu \mathrm{l}$ of each dilution was added to the $10-\mu \mathrm{l}$ reaction mixture. The standard curve of the $\sigma_{\text {marYl }}$, based on the 5'-LTR of marY1 cloned in the plasmid pHHM149, thus produced the slope (S) of \log concentration $(\mathrm{ng} / \mathrm{ml})$ vs a cycle number of -3.077 with error (E) of 0.146 and regression coefficient (R) of -1.0 . Similarly, the standard curves of coding regions of marY1 and marY2N, i.e., pol $l_{\text {marYl }}$ and pol- $1_{\text {marY2N }}$, were drawn based on the plasmid pHHM 147 and pHHM 166 , respectively. The former showed S of -3.214 with E of 0.169 and R of -1.0 , and the latter showed S of -3.266 with E of 0.132 and R of -1.0 . PCR products were recognized as showing a single melting curve that fits the melting curve of a control plasmid used for constructing a standard curve in the LightCycler system, confirming the authenticity of quantified PCR products. Furthermore, the amplified fragments were
recognized as a single band of a predicted size in TBE1.5% agarose gel electrophoresis (Fig. 1).

Determination of the copy number of the target DNA
The copy number of the target DNA in a single copy of the T. matsutake genome was established by the following equation, which used the average genome size of basidiomycetes published elsewhere (34 Mbp ; Royer et al. 1991; Walz 2004); such a value was not available in T. matsutake due to the difficulty of generating protoplast cells.

$$
\begin{aligned}
\mathrm{Cn} & =[V /(\mathrm{Fs} \times \mathrm{Mw}) \times N] /[\mathrm{Ga} /(\mathrm{Gs} \times \mathrm{Mw}) \times N] \\
& =(V \times \mathrm{Fs}) /(\mathrm{Ga} \times \mathrm{Gs}),
\end{aligned}
$$

where Cn is the copy number per genome; V, value of row data; Fs, size of a fragment used to construct a standard curve (bp); Mw, molecular weight of one bp nucleotide (Dalton); N, Avogadro constant; Ga, amount of chromosome used in the reaction (10 ng); and Gs, size of the genome ($3.4 \times 10^{7} \mathrm{bp}$).

Alternatively, it might be possible to determine the copy number of target DNA referring to a single copy gene. However, such a gene is not identified in T. matsutake, as in the case with many other homobasidiomycetes, and it is possible that the presence of even a few pseudogenes homologous to the single copy gene used for the reference dramatically changes the result. Therefore, it should be much more reliable to use the average genome size worked out from data available in basidiomycetes such as Agaricus bisporus (34 Mbp), Pleurotus ostreatus (35 Mbp), Phanerochaete chrysosporium (32 Mbp), and Schizophyllum commune (35-36 Mbp) (Royer et al. 1991; Walz
2004). The average genome size thus obtained also corresponds to the genome size of the other group of higher fungi, ascomycetes such as Aspergillus nidulans (31 Mbp), Curvularia lunata (29.7 Mbp), Penicillium chrysogenum (32.8-34.1 Mbp), and Trichoderma longibranchiatum (33 Mbp) (Royer et al. 1991; Walz 2004). Although we may have to recalculate the data once the precise genome size of T. matsutake and related fungi becomes available, the change of the results should be marginal. Furthermore, the recalculation should affect all the data in parallel, rendering the comparative studies unimpaired.

Results

Both T. matsutake Y1 and Y4 were found to contain ca. 1,500 copies of $\sigma_{m a r Y 1}$, the LTR of marY1, in their genomes (Fig. 2). Such a high copy number was noted in T. matsutake K1 and K3 from Korea and CHI1 and TM-9 from China (Fig. 2). T. matsutake TM-5 and MC1, and TM-4 and MX1 that represent isolates from Morocco and Mexico, respectively, as well as Tricholoma magnivelare TM10 and Tp-C3, contained ca. 300 copies of $\sigma_{\text {marYI }}$. All other fungi related to T. matsutake contained a far smaller number (less than 10 copies) of $\sigma_{\text {mar } Y 1}$. As compared with $\sigma_{\text {mar } Y 1}$, the copy number of the coding region of marY1 was markedly low (Fig. 2). For example, Asian isolates of T. matsutake contained ca. 200 copies of pol $_{\text {marYI }}$ in the genome, whereas the isolates from Morocco and Mexico had ca. 60 and 20 copies, respectively (Fig. 2). T.
magnivelare $\mathrm{TM}-10$ and $\mathrm{Tp}-\mathrm{C} 3$ contained less than 10 copies of $\operatorname{pol}_{\text {mar } Y I}$ (Fig. 2) Other fungi related to T. matsutake were found to contain a single copy of pol $l_{\text {marYl }}$. The copy number of a coding region of marY2N followed a similar trend to that of marY1, although the values of marY2N were consistently lower than those of marY1 (Fig. 2). Based on the copy number and molecular size, we estimated that marYl and marY2N occupied ca. 5.5% of the genome of Asian isolates of T. matsutake, ca. 0.5$0.8 \%$ of the Morocco and Mexican isolates and T. magnivelare, and less than 0.01% in other closely related Tricholoma spp.

Discussion

Unlike the pol $_{\text {marYl }}$ coding region of marYl, the LTR of marY1 designated as $\sigma_{\operatorname{marYI}}$ is widely distributed in T. matsutake worldwide and in T. magnivelare with a markedly high copy number. This observation suggests that the majority of $\sigma_{m a r Y l}$ is a solo element without coding regions of marYl in the genome, and that $\sigma_{\text {marYl }}$ itself exerted great influence on the evolution of T. matsutake in the genus Tricholoma. Coincidentally, we detected some features characteristic of short interspersed nuclear elements (SINEs), which are 75 - to $500-\mathrm{bp}$ DNA elements that replicate through an RNA intermediate, in the complementary strand of $\sigma_{\text {mar } Y I}$ (DDBJ accession no. AB028236).

In humans, 45% of the genome draft sequence is derived from transposable elements, mostly retrotransposons (The

Fig. 2 Copy number of $\sigma_{m a r Y I}$ and $\operatorname{pol}_{\text {mar } Y I}$ derived from the retrotransposon marY1, and pol-1 marY2N from marY2N in the genome of T. matsutake and closely related fungi. Solid bar represents the copy number of $\sigma_{\text {marYi }} ;$ shaded bar, copy number of pol $l_{\text {marYl }}$; dotted bar,
copy number of pol-1 $1_{\text {mar }}$. . Following are the abbreviations used: Tm, T. matsutake; Tg, T. magnivelare; Tb , T. bakamatsutake; Tf, T. fulvocastaneum; and Tr, T. robustum. Fungal strains and their geographical origins are given

Human Genome Sequencing Consortium 2001; Nekrutenko and Li 2001). Of those, LINEs and SINEs are predominant in the human genome (Deininger 1989; Hutchison et al. 1989). In contrast to LINEs of humans, the copy number of a LINE designated marY2N is much less than that of the LTR retrotransposon marY1 in T. matsutake and related fungi. This situation is apparently consistent with the fact that only a few LINEs have been observed in higher fungi, including filamentous ascomycetes, whereas LTR retrotransposons, which resemble retroviruses, have been ubiquitously identified (Pöggeler and Kempken 2004). We previously documented that reverse transcriptase genes of marY2N-like elements cloned from some ectomycorrhizal Tricholoma samples showed a vertical phylogenetic relatedness, consistent with their host-parasite relations and fungal taxonomy, whereas reverse transcriptase genes of marY1-like elements did not show such a relatedness, their mutual relations being horizontal (Murata et al. 2002). Therefore, the genome of T. matsutake could have dramatically evolved during a rather later evolutionary stage by the heavy involvement of LTR retrotransposons.

The 5'-region of marYl containing $\sigma_{\text {mar } Y l}$ expresses in a heterologous Saccharomyces cerevisiae system, indicating that the promoters of marYl are recognizable by trans-acting factors shared in common among higher fungi (Murata and Miyazaki 2001). Although we cannot yet confirm this, as evidenced by the full-length transcript unit, $\sigma_{\operatorname{marYl}}$ may also be a component of various genes and cis-regulatory regions. In humans and mice, a large number of transposable elements, mostly retrotransposons, are identified in protein coding regions as well (Jordan et al. 2003; Nekrutenko and Li 2001; van de Lagemaat et al. 2003). Such a phenomenon is observable especially in genomes that have evolved lately (Jordan et al. 2003; Nekrutenko and Li 2001; van de Lagemaat et al. 2003).

In the phytopathogen Magnaporthe grisea, retrotransposons are tightly linked to genes that determine host plant-specificity (Farman et al. 2002; Shull and Hamer 1996; Talbot et al. 1993). Such a trend is also observed in another eukaryotic phytopathogen Pyrenophora tritici-repentis (Lichter et al. 2002; Martinez et al. 2004). In addition, phenotypic variants were generated by de novo integration of transposable elements in M. grisea (Kang et al. 2001; Nishimura et al. 2000; Shull and Hamer 1996). In T. matsutake, insertion sites of $\sigma_{m a r Y I}$ are highly polymorphic within the species (Murata et al. 2005). In fact, the present study shows that inter- and intra-specific variations could have occurred even regarding the copy number of retrotransposons in T. matsutake. We are currently trying to identify the yet unearthed transposons and characterize the genomics associated with transposable elements. Further transposon-based genome analysis in the future may greatly contribute to the understanding of biology and biodiversity of commercially valuable T. matsutake.

Acknowledgements This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fishery of Japan.

References

Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor, New York, pp 1-448
Deininger P (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 619-636
Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA (2002) Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microb Interact 15:6-16
Gibson UA, Heid CA, Williams PM (1996) A novel method for real-time quantitative RT-PCR. Genome Res 6:995-1001
Heid CA, Stevens J, Livak KJ, Williams M (1996) Real-time quantitative PCR. Genome Res 6:986-994
Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Bio/ Technology 10:413-417
Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake mushroom. USDA-Forest service PNW-GTR412, pp 1-68
Hutchison C III, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 593-617
Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68-72
Kang S, Lebrun MH, Farrell L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microb Interact 14:671-674
Lichter A, Gaventa JM, Ciuffetti LM (2002) Chromosome-based molecular characterization of pathogenic and non-pathogenic wheat isolates of Pyrenophora tritici-repentis. Fungal Genet Biol 37:180-189
Martinez JP, Oesch NW, Ciuffetti LM (2004) Characterization of the multiple-copy host-selective toxin gene, tox B, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Mol Plant-Microb Interact 17:467-474
Murata H, Miyazaki Y (2001) Expression of marYl, a gypsy-type LTR-retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, in the budding yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65:993-995
Murata H, Yamada A (2000) marYl, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66:3642-3645
Murata H, Miyazaki Y, Babasaki K (2001a) The long terminal repeat (LTR) sequence of marY1, a retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, is highly conserved in various higher fungi. Biosci Biotechnol Biochem 65:2297-2300
Murata H, Miyazaki Y, Yamada A (2001b) marY2N, a LINE-like non-long terminal repeat (non-LTR) retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake. Biosci Biotechnol Biochem 65:2301-2305
Murata H, Babasaki K, Miyazaki Y, Yamada A (2002) Genetic evidence that two types of retroelements evolved through different pathways in ectomycorrhizal homobasidiomycetes Tricholoma spp. Biosci Biotechnol Biochem 66:1880-1886
Murata H, Babasaki K, Yamada A (2005) Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on $\sigma_{\text {mar }}$, the long terminal repeat of gypsy-type retroelement marYl. Mycorrhiza 15:179-186

Nakayama K, Nakanishi J (2004) Tricholoma matsutake in Xichang, Sichuan and Chuxioug, Yunnan, China. Abstract of the 48th annual meeting of the Mycological Society of Japan, p 45
Nekrutenko A, Li W-H (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619-621
Nishimura M, Hayashi N, Jwa N-S, Lau GW, Hamer JE, Hasebe A (2000) Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol PlantMicrob Interact 13:892-894
Pöggeler S, Kempken F (2004) Mobile genetic elements in mycelial fungi. In: Kück U (ed) Genetics and biotechnology, 2nd edn. In: Esser K (ed) The Mycota II. Springer, Berlin Heidelberg New York, pp. 165-198
Royer JC, Hintz WE, Horgen PA (1991) Efficient protoplast formation and electrophoretic karyotype analysis of Agaricus bisporus. In: van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Waganingen, pp 52-61

Shull V, Hamer JE (1996) Rearrangement at a DNA-fingerprint locus in the rice blast fungus. Curr Genet 30:263-271
Talbot NJ, Salch YP, Ma M, Hamer JE (1993) Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl Environ Microbiol 59:585-593
The Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860 921
van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530-536
Walz M (2004) Electrophoretic karyotyping. In: Esser K, Kück U (eds) The Mycota II, a comprehensive treatise on fungi as experimental systems for basic and applied research: genetics and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 53-70

[^0]: H. Murata $(\boxtimes) \cdot$ K. Babasaki

 Department of Applied Microbiology and Mushroom Sciences, Forestry and Forest Products Research Institute, Matsunosato 1,
 Tsukuba, 305-8687, Japan
 e-mail: murmur@ffpri.affrc.go.jp
 Tel.: +81-298-733211
 Fax: +81-298-730507

